
SOP-8L Plastic-Encapsulate MOSFETS

AO4622

Complementary Enhancement Mode Field Effect Transistor

Features

	n-channel	p-channel
■ V _{DS} (V) =	20V	-20V
■ I _D = 7.3A (V _{GS} =4.5V)	-5A (V _{GS} =-4.5V)
■ R _{DS(ON)}		R _{DS(ON)}
< 23mΩ (\	/ _{GS} =10V)	$< 53 m\Omega (V_{GS} = -4.5 V)$
< 30mΩ (\	/ _{GS} =4.5V)	< 87mΩ (V _{GS} = -2.5V)
< 84mΩ (\	/ _{Gs} =2.5V)	

Marking: B86

Applications

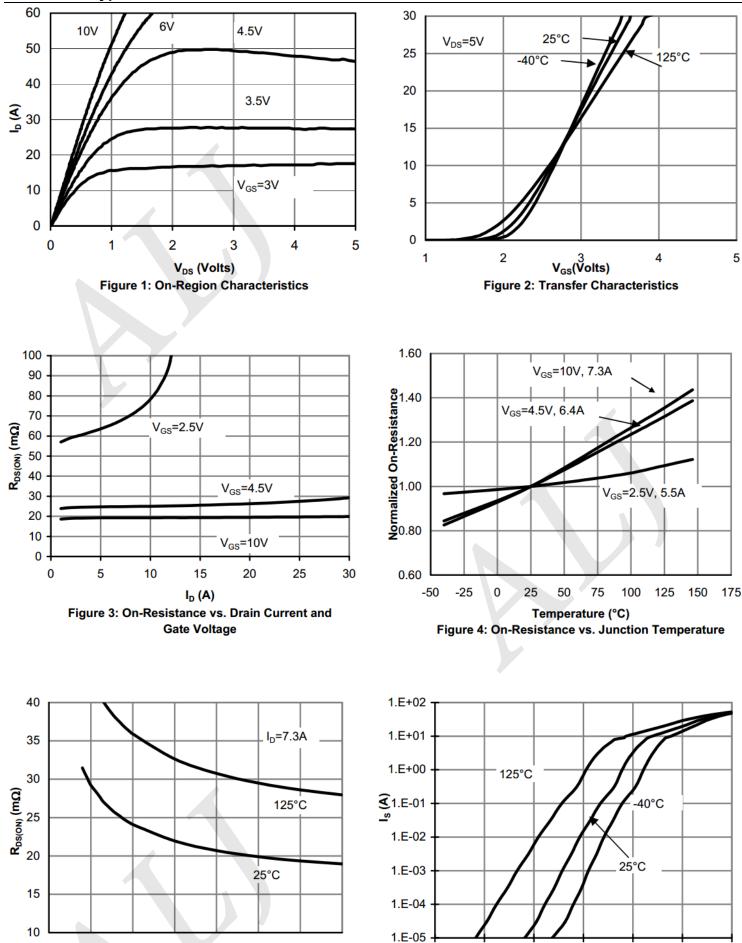
The AO4622 uses advanced trench technology MOSFETs to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications. Standard product AO4622 is Pb-free.

Maximum Ratings (T_a=25°C unless otherwise specified)

Symphol	Parameter		Va	11		
Symbol			N-channel	P-channel	Unit	
VDS	Drain-Source voltage		20	-20	V	
V _{GS}	Gate-Source voltage		±16	±12	V	
ID C	Continuous Drain Current ^{1, 6)}	T _A = 25 °C	7.3	-5	А	
		T _A = 70 °C	6.2	-4.2		
Ідм	Pulsed Drain Current ²⁾		35	-25		
PD Pow	Power Dissipation	T _A = 25 °C	2	2	w	
		T _A = 70 °C	1.44	1.44	vv	
I _{AR}	Repetitive Avalanche Current ²⁾		13	13	А	
EAR	Repetitive Avalanche Energy 0.1mH ²⁾		25 25		mJ	
Tj, T _{stg}	Operating Junction and Storage Temperature Range		-55 to	°C		

Thermal Characteristics

Symbol	Parameter		Device	Тур.	Max.	Unit
R _{0JA}	Maximum Junction-to-Ambient ¹⁾	t ≤ 10s	N-ch	48	62.5	
	Maximum Junction-to-Ambient 1)	Steady-State	N-ch	74	110	°C/W
R _{0JL}	Maximum Junction-to-Lead 3)	Steady-State	N-ch	35	40	
R _{0JA}	Maximum Junction-to-Ambient 1)	t ≤ 10s	P-ch	48	62.5	
	Maximum Junction-to-Ambient ¹⁾	Steady-State	P-ch	74	110	°C/W
R _{0JL}	Maximum Junction-to-Lead ³⁾	Steady-State	P-ch	35	40	


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Static		•		•		
V(BR)DSS	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250µA	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16V, V _{GS} = 0V			1	
		V _{DS} = 16V, V _{GS} =0V, T _J = 55°C			5	μA
I _{GSS}	Gate-body Leakage current	$V_{DS} = 0V, V_{GS} = \pm 16V$			±100	nA
V _{GS(th)}	Gate-Threshold Voltage	V _{DS} = V _{GS} , I _D = 250µA	0.6	1.25	2	V
ID(ON)	On state drain current	V _{GS} = 4.5V, V _{DS} = 5V	35			Α
		V _{GS} = 10V, I _D = 7.3A		19	23	- mΩ
-		V _{GS} = 10V, I _D = 7.3A, T _J = 55°C		28	33.6	
RDS(on)	Drain-Source On-Resistance	V_{GS} = 4.5V, I_{D} = 6.4A		24	30	
		V _{GS} = 2.5V, I _D = 4.5A		67	84	
g fs	Forward Trans conductance	V _{DS} = 5V, I _D =7.3A		17		S
ls	Maximum Body-Diode Continuous Curre	nt			3	Α
V _{SD}	Diode Forward Voltage	I _S = 1A		0.7	1	V
Dynamic		·			•	•
Ciss	Input Capacitance	V _{GS} = 0V		900	1100	pF
Coss	Output Capacitance	V _{DS} = 10V f = 1.0MHz	~	162		
C _{rss}	Reverse Transfer Capacitance			105		
Rg	Gate resistance	V _{GS} = 0V, V _{DS} = 0V, f = 1MHz		1.8	2.7	Ω
Switching]					
Q _g (10V)	Total Gate Charge			15	18	nC
Qg(4.5V)	Total Gate Charge	V _G s = 10V, I _D = 10A, V _D s = 6.5V		7.2	9	
Q _{gs}	Gate-Source Charge			1.8		
Q _{gd}	Gate-Drain Charge			2.8		
td(on)	Turn-On Delay Time	V_{GS} = 10V, V_{DS} = 10V, R_L =1.4 Ω , R_{GEN} = 3 Ω		4.5		ns
tr	Rise Time			9.2		
t _{d(off)}	Turn-Off Delay Time			18.7		
t _f	Fall Time]		3.3		
trr	Body Diode Reverse Recovery Time			18		ns
Qrr	Body Diode Reverse Recovery Charge	I⊧ = 7.3A, dI/dt = 100A/µs		9.5		nC

amuica anaaifiad)

Notes

1. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}C$. The value in any given application depends on the user's specific board design.

- 2. Repetitive rating, pulse width limited by junction temperature.
- 3. The R_{0JA} is the sum of the thermal impedance from junction to lead R_{0JL} and lead to ambient. R_{0JL} and R_{0JC} are equivalent terms referring to thermal resistance from junction to drain lead.
- 4. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
- 5. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.
- 6. The current rating is based on the t \leq 10s thermal resistance rating.

N-Channel Typical Characteristics

www.szlongjing.com

4

3

5

6

V_{GS} (Volts)

Figure 5: On-Resistance vs. Gate-Source Voltage

7

8

9

10

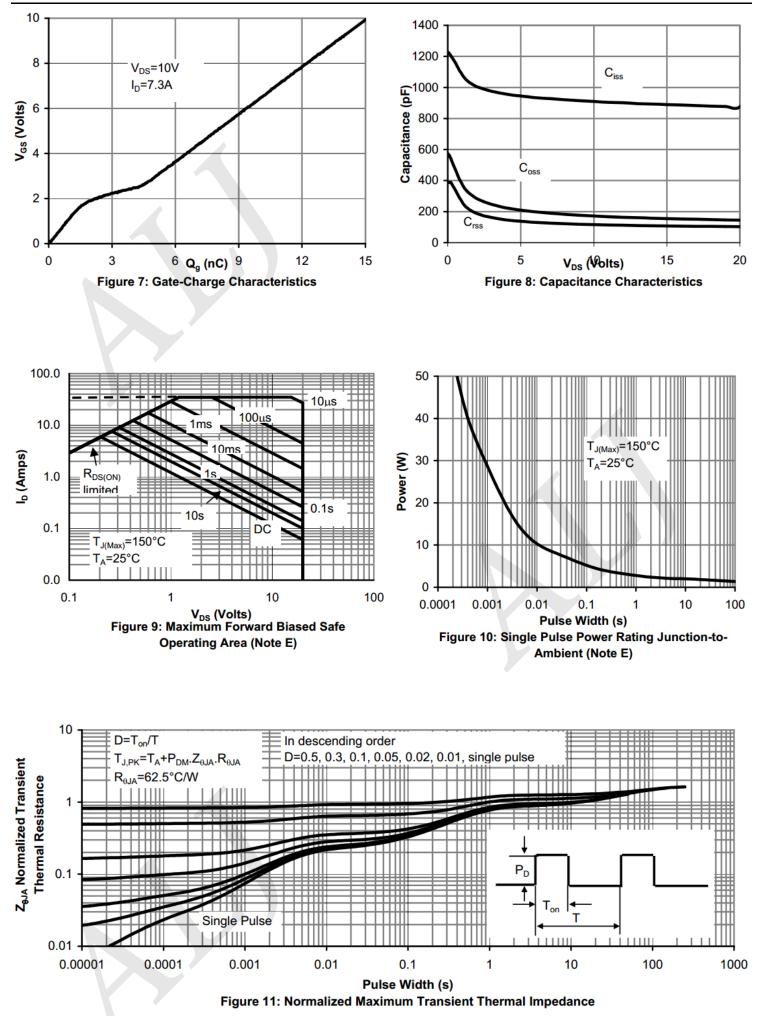
0.2

0.4

0.6

V_{SD} (Volts)

Figure 6: Body-Diode Characteristics


0.8

0.0

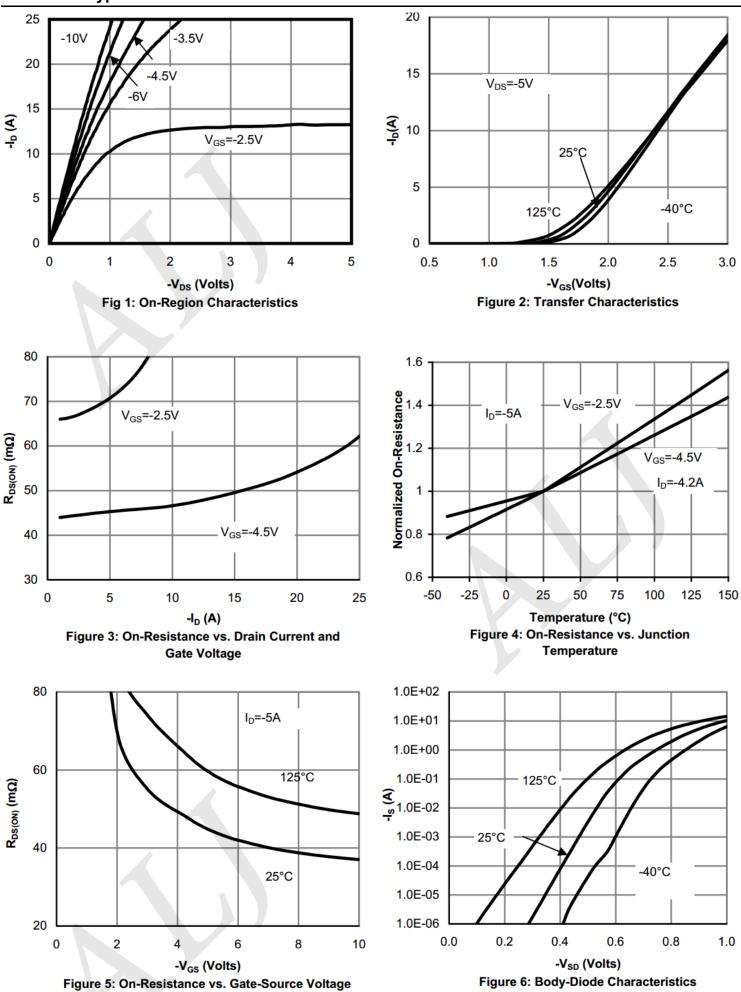
1.2

1.0

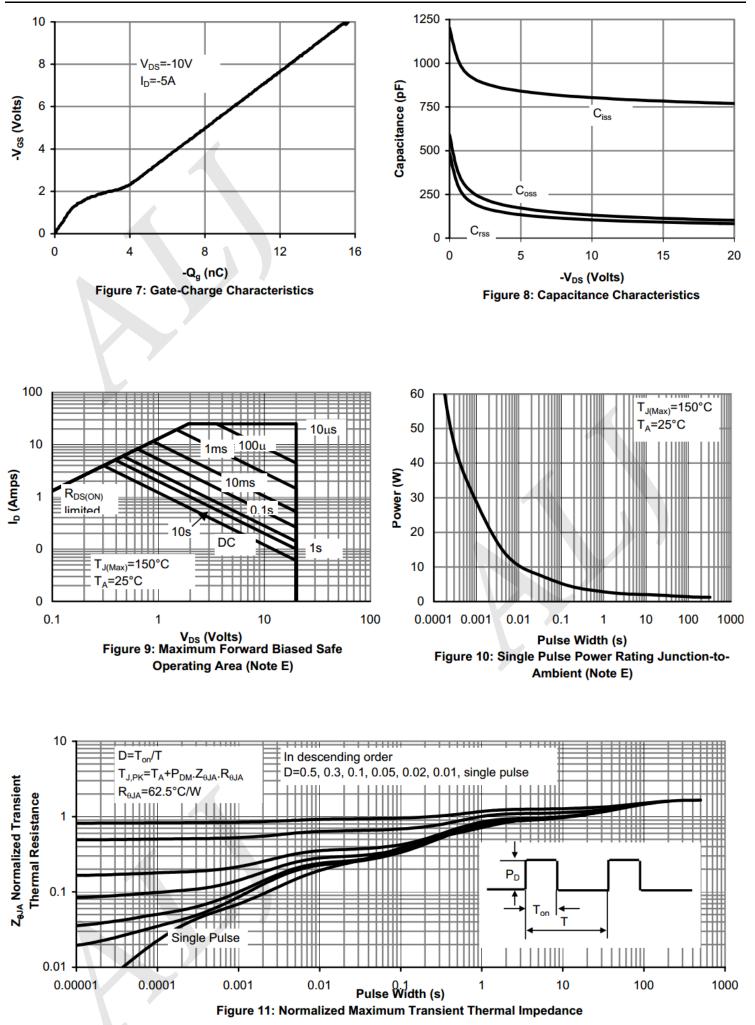
N-Channel Typical Characteristics (Cont.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Static	-	•				
V(BR)DSS	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = -250µA	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	
		V _{DS} = -16V, V _{GS} =0V, T _J = 55°C			-5	μA
I _{GSS}	Gate-body Leakage current	$V_{DS} = 0V, V_{GS} = \pm 12V$			±100	nA
V _{GS(th)}	Gate-Threshold Voltage	V _{DS} = V _{GS} , I _D = -250µA	-1.3	-0.9	-0.5	V
ID(ON)	On state drain current	V _{GS} = -4.5V, V _{DS} = -5V	-25			А
		V _{GS} = -4.5V, I _D = -5A		44	53	mΩ
R _{DS(on)}	Drain-Source On-Resistance	V _{GS} = -4.5V, I _D = -5A, T _J = 125°C		59	71	
		V _{GS} = -2.5V, I _D = -4.2A		67	87	
g fs	Forward Trans conductance	V _{DS} = -5V, I _D =-5A		13		S
ls	Maximum Body-Diode Continuous Curre	nt			-2.5	А
Vsd	Diode Forward Voltage	Is = -1A, V _{GS} = 0V		-0.76	-1	V
Dynamic		•				
Ciss	Input Capacitance	V _{GS} = 0V V _{DS} = -10V		800	960	pF
Coss	Output Capacitance			131		
Crss	Reverse Transfer Capacitance	f = 1.0MHz	Y	103		
Rg	Gate resistance	V _{GS} = 0V, V _{DS} = 0V, f = 1MHz		6.7	10	Ω
Switching	3					
Q _g (10V)	Total Gate Charge			15.5		
Qg(4.5V)	Total Gate Charge	$V_{GS} = -4.5V,$		7.4		nC
Qgs	Gate-Source Charge	I _D = -4.5A, V _{DS} = -10V		1.3		
Q _{gd}	Gate-Drain Charge			2.9		
t _{d(on)}	Turn-On Delay Time	V_{GS} = -4.5V, V_{DS} = -10V, R_L =2 Ω , R_{GEN} = 3 Ω		4.4		
tr	Rise Time			7.6		ns.
t d(off)	Turn-Off Delay Time			44		
t _f	Fall Time	1		13.5		
t _{rr}	Body Diode Reverse Recovery Time			20		ns
Qrr	Body Diode Reverse Recovery Charge	l⊧ = -5A, dI/dt = 100A/µs		9		nC

P-Channel Electrical Characteristics (T_J=25°C unless otherwise specified)


Notes

1. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}C$. The value in any given application depends on the user's specific board design.


2. Repetitive rating, pulse width limited by junction temperature.

- 3. The R_{0JA} is the sum of the thermal impedance from junction to lead R_{0JL} and lead to ambient. R_{0JL} and R_{0JC} are equivalent terms referring to thermal resistance from junction to drain lead.
- 4. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The SOA curve provides a single pulse rating.
- 6. The current rating is based on the t \leq 10s thermal resistance rating.

P-Channel Typical Characteristics

P-Channel Typical Characteristics (Cont.)

